听

Undergraduate Catalog 2020-2021
Electrical Engineering (BEE)
Description
Electrical, electronics and computer engineers find innovative ways to use electronics and computers to improve people’s lives. Electrical engineers have dozens of career options. They can design a smart-phone, smart-grid power system, electric/hybrid vehicle or an autonomous vehicle. They can develop robots that assist the disadvantaged or execute search and rescue missions. The Internet of Things (IoT) is entirely a product of electrical engineering. Electrical and computer engineers design medical testing equipment, work on the spacecraft and design communication satellites. The preparation for all of these jobs begins with a bachelor's degree in Electrical Engineering.
91福利社's state-of-the-art curriculum in electrical and computer engineering will start you in the right direction. We've revised our curriculum to tap into your creativity so you can apply theoretical concepts to find innovative solutions to new problems. By working with hands-on projects which explore a series of robotic, sensor, and/or wireless communication systems, you combine electrical and computer engineering concepts with practical applications. Then, at multiple points in your four-year program, you work in industry under the supervision of engineers (a co-op assignment with an engineer's salary) to apply your knowledge and build real work experience. Rather than focusing on dry theoretical topics separately, we teach you engineering theory through an integrated and applied approach, so you learn how concepts work together - as they would in the "real world." Thus, your education in the Electrical & Computer Engineering and Computer Science Department helps prepare you to develop the next neural-controlled artificial limb, hybrid "green" energy system, or vision-controlled autonomous vehicle.
Along with robotics, wireless communication, and embedded systems, our curriculum also allows you to explore mechatronics - a growing area in many industries - through a new series of courses where you work on sensors, modeling, embedded computers, control systems, and electronics. You can study elements of electrical/computer engineering and select mechanical engineering topics, which are critical for developing products in today's increasingly interdisciplinary technological world.
This program is accredited by the Engineering Accreditation Commission of .
Our Bachelor of Electrical Engineering program is based on three key elements:
- Spiral-based Curriculum - You discover that Electrical and Computer Engineering is a fascinating field as you revisit basic concepts and applications in multiple courses at different times and in increasingly more sophisticated contexts.
- Contextual Understanding - By working with multiple simultaneous topics in class and project-labs, you will understand the how and why of entire engineering systems rather than just pieces and parts.
- Experiential Learning - You learn as you apply concepts to "hands-on" projects beyond the classroom through electronics, wireless IoT, robotics, and autonomous vehicle projects, as well as through paid cooperative education placements.
Other distinctive EE program features include:
- Optional Concentration in Computer Engineering
- Five-year bachelor/master program for qualified students (click here for more information)
- Hands-on real-world projects from freshman through the senior year.
- Pre-medical track within Bachelor of Engineering which includes courses in biology and chemistry that are needed to gain admission to and be successful in medical school.
Program Learning Outcomes
Graduates of this program will have an ability to:
- identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics;
- apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors;
- communicate effectively with a range of audiences;
- recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts;
- function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives;
- develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions;
-
acquire and apply new knowledge as needed, using appropriate learning strategies;
Electrical Engineering Program Educational Objectives
ABET defines Program Educational Objectives (PEOs) as “broad statements that describe what graduates are expected to attain within a few years of graduation.”
The graduates of the Bachelor of Electrical Engineering program are expected, within a few years of graduation, to:
- Demonstrate by successful professional engineering practice and/or pursuit of advanced engineering degrees, technical proficiency in engineering fundamentals;
- Excel in the practice of engineering through effective communication, collaboration and teamwork, lifelong learning, and creative engineering problem solving; and,
- Contribute to the engineering profession and to society in a manner consistent with the Jesuit and Mercy traditions, which include leadership and service within a strong moral and ethical framework.
Degree Requirements - Bachelor of Electrical Engineering (139 credits)
The Bachelor of Electrical Engineering curriculum includes major courses, foundation courses, and the University Core Curriculum courses.
Bachelor of Electrical Engineering Major Courses (65 credits)
The major consists of a strong set of required courses and technical electives which give students options to focus on specific areas within the discipline.
- CSSE 1712 Introduction to Programming I (3 credits)
- CSSE 1722 Introduction to Programming II (3 credits)
- ELEE 2500 Fundamentals of Electrical and Computer Engineering I (3 credits)
- ELEE 2510 Fundamentals of Electrical and Computer Engineering I Lab (1 credit)
- ELEE 2520 Fundamentals of Electrical and Computer Engineering II (3 credits)
- ELEE 2530 Fundamentals of Electrical and Computer Engineering II Lab (1 credit)
- ELEE 2640 Digital Logic Circuits (3 credits)
- ELEE 2650 Digital Logic Circuits Lab (1 credit)
- ELEE 3540 Electronic Systems (3 credits)
- ELEE 3550 Electronic Systems Laboratory (1 credit)
- ELEE 3660 Electromagnetics I (3 credits)
- ELEE 3720 Electromechanical Energy Conversion (3 credits)
- ELEE 3740 Communication Theory I (3 credits)
- ELEE 3860 Introduction to Microcontrollers (3 credits)
- ELEE 3870 Introduction to Microcontrollers Lab (1 credit)
- ELEE 3880 Signals and Systems (3 credits)
- ELEE 4000 Hardware and Software Integration (3 credits)